

Mass Timber Webinar Series Pioneering Mass Timber: MSU's STEM Facility

Future events

Lansing 2030 District Incentives, Rebates, and Funding for Efficiency **Thursday, March 27th** 10–11am Via Zoom

Mass Timber Webinar Series

Kalamazoo Regional Educational

Service Agency In collaboration with MassTimber@MSU **Thursday, April 24th** 10–11am Via Zoom

ildings Michi

Michigan Energy Summit

Thursday, May 8th 8:30am - 4:30pm JW Marriott, Grand Rapids

Future events

Mass Timber Webinar Series DNR Newberry In collaboration with MassTimber@MSU **Thursday, June 26th** 10–11am Via Zoom

Mass Timber Webinar Series Adelaide Pointe Condos In collaboration with MassTimber@MSU **Thursday, July 24th** 10–11am Via Zoom

Become a member!

Support real impact on your local community and join a network of like-minded individuals who are interested in all things building science.

Scan the QR code with your device to join today!

Thank You to our

Visionary Supporters

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Agenda

Sandra Lupien Director MassTimber@MSU Moderator

George H. Berghorn, PhD, LEED AP, CGP Assistant Professor, Construction Management Research Director, MassTimber@MSU Project History

Kevin Marshall Associate/Senior Architect Integrated Design Solutions Architect

GRANGER

MICHIGAN GREEN BUILDING COLLABORATIVE CBBC

Andrew Riess, PE Director of Pre-Construction and Mass Timber Christman Constructors, Inc. Installer

WFBINAR

MassTimber@MSU leverages research, education, outreach, communications, policy, and partnerships to advance sustainable mass timber construction and manufacture in Michigan, the Great Lakes region and beyond.

canr.msu.edu/masstimber/ #MIMassTimberMomentum

TYPES OF MASS TIMBER

Glue-laminated Timber (Glulam)

Cross-Laminated Timber (CLT)

Mass Plywood Panels

StructureCraft

Nail-Laminated Timber

Dowel Laminated Timber

Wood Centra

Laminated Veneer Lumber

theconstructo

Fostering a Mass Timber Ecosystem

STEM Facility as Learning Lab

Bringing People Together

Technical Assistance and Peer Learning

This quarterly virtual gathering will provide technical assistance and peer learning for those involved in mass timber projects across Michigan in a supportive and confidential environment.

Mass Timber Projects in Michigan: ~60 Complete or in the Pipeline

K-12 schools, Universities

Training Facilities, Community Centers, Government Buildings

Apartments & Condos Affordable Housing Single-Family Home

Hotel

Contact

Sandra Lupien Director, MassTimber@MSU Lupiensa@msu.edu 510-681-3171

Mobilizing education, science, outreach, and communication to advance mass timber construction and manufacture in Michigan and the surrounding region.

@MassTimberatMSU

canr.msu.edu/masstimber/

George H. Berghorn, PhD, LEED AP, CGP Assistant Professor Research Director, MassTimber@MSU Michigan State University

- Summer 2016 Madison, WI
- February 2017 Meet with the Executive VP
- Spring 2017 Summer 2018 "The Long and Winding Road"

- August 2018 Groundbreaking
- Summer 2021 Opening

The Case Back Then

- Innovation: First-of-its-Type
- Campus as a Learning Laboratory
- Public Funding

The Case Now

• Innovation on Display – National Recognition

• Building as a Teaching Tool

- Outreach and Engagement Tool: 3,500+ tour participants + technical assistance
- Conversation Changer

INTEGRATED design SOLUTIONS architecture engineering interiors & technology

Kevin Marshall AIA, LEED AP BD+C

Lead Project Architect

Shaw Lane Powerplant **Existing Steel Building Frame Existing concrete Floors** New Floors constructed of CLT to Steel frame and composite concrete _ connect with STEM wings floor to increase spans while maintaining ceiling heights **STEM Wings** Exposed Glu-Lam columns and beams to highlight wood construction and yet be less industrial than Power Plant Floors constructed of CLT with polished concrete topping as walking surface

Mass Timber Considerations

i D S

Mass Timber Considerations: Structural Design

Construction Type Fire Resistance/Panel Thickness Vibration Analysis

Right Sizing Timber

	ALLOWABLE AREA FACTOR (A, = NS, S1, S13R, S13D or SM, as applicable) IN SQUARE FEET ^{a, b}													
	OCCUPANOV	SEE FOOTNOTES	TYPE OF CONSTRUCTION											
	CLASSIFICATION		Type I		Type II		Type III		Type IV				Type V	
			Α	В	A	В	A	В	A	В	С	НТ	Α	В
Mass Timber Considerations: Structural Design		NS	UL	UL	15,500	8,500	14,000	8,500	45,000	30,000	18,750	15,000	11,500	5,500
	A-1	S1	UL	UL	62,000	34,000	56,000	34,000	180,000	120,000	75,000	60,000	46,000	22,000
		SM	UL	UL	46,500	25,500	42,000	25,500	135,000	90,000	56,250	45,000	34,500	16,500
		NS	UL	UL	15,500	9,500	14,000	9,500	45,000	30,000	18,750	15,000	11,500	6,000
	A-2	S1	UL	UL	62,000	38,000	56,000	38,000	180,000	120,000	75,000	60,000	46,000	24,000
		SM	UL	UL	46,500	28,500	42,000	28,500	135,000	90,000	56,250	45,000	34,500	18,000
Construction Type		NS	UL	UL	15,500	9,500	14,000	9,500	45,000	30,000	18,750	15,000	11,500	6,000
	A-3	S1	UL	UL	62,000	38,000	56,000	38,000	180,000	120,000	75,000	60,000	46,000	24,000
		SM	UL	UL	46,500	28,500	42,000	28,500	135,000	90,000	56,250	45,000	34,500	18,000
	-	NS	UL	UL	15,500	9,500	14,000	9,500	45,000	30,000	18,750	15,000	11,500	6,000
	A-4	S1	UL	UL	62,000	38,000	56,000	38,000	180,000	120,000	75,000	60,000	46,000	24,000
Construction Type: IIIB		SM	UL	UL	46,500	28,500	42,000	28,500	135,000	90,000	56,250	45,000	34,500	18,000
construction type. Inb		NS												
First Floor Areas	A-5	S1	UL	UL	UL	UL	UL	UL	UL	UL	UL	UL	UL	UL
Thist Hoor Areas:		SM												l l
North STEM: 12.488 sf		NS	UL	UL	37,500	23,000	28,500	19,000	108,000	72,000	45,000	36,000	18,000	9,000
Dower Dianty 10,020 of	В	S1	UL	UL	150,000	92,000	114,000	76,000	432,000	288,000	180,000	144,000	72,000	36,000
Power Plant: 19,929 St		SM	UL	UL	112,500	69,000	85,500	57,000	324,000	216,000	135,000	108,000	54,000	27,000
South STEM: 24,103 sf														

Pioneering Mass Timber: MSU STEM Facility

TABLE 506.2

Pioneering Mass Timber: MSU STEM Facility

INTEGRATED DESIGN SOLUTIONS

Mass Timber Considerations: Design Decisions

> Beam Connections Column Design Lateral System Transitions

Mass Timber **Considerations: Design Decisions**

Beam Connections

IDS CELEBRATING 25 YEARS

Mass Timber Considerations: Design Decisions

Column Design

IDS CELEBRATING 25 YEARS

Mass Timber Considerations: Design Decisions

Lateral System

IDS CELEBRATING 25 YEARS

Mass Timber Considerations: Design Decisions

Transitions

Typical Erection Sequence

Typical Erection Sequence

Typical Erection Sequence

Entering STEM from Southwest

INTRODUCTION

GRANGER

ADVANCE THE ART OF BUILDING

Bill Bofysil

Project Director

PIONEERING MASS TIMBER: MSU STEM

DISCOVERY

MICHIGAN STATE UNIVERSITY STEM Teaching

STEM Teaching & Learning Facility

BACKGROUND

NSU derived to estion the suse of mass immer manufalls for the TSIM tracking & Learning, Collar, "The STM project train INSU" (NVRU PSNL), DSC congregal regards a sub-sing for matter opperts in three workshops from December 2012 Through Tebruary 2018. The project time worklands for deforences between sub-structural steel collary, a mass timble calling or including, Tint & Life cycle cost, construction schedule, building systems recordination, code monostitor, relation (NSU participac), construction schedule, building systems recordination, code nonstructure, team of subject manufall call calcinomic immune, vision schedule, parts and other: Some topics were explored in detail, others were discussed in a Q.8. A-style forum betweren the project team and subject matter experts.

PROCESS SUMMARY

Workshop #1 - December 15, 2017

Objectives: Develop and co-draft (with SME's) a preliminary Choosing by Advantages (CBA) worksheet evaluating preliminary advantages of either steel and mass timber solutions or some combination of both.

Attendees: MSU IPF, FPSM, IDS, SDI, Granger, Kirby, Guardian

<u>Conclusions</u>: Little to no difference in most factors considered. Some differences with with anticipated construction schedule (mass timber should table less time to erect), availability of local, qualified trade patrens (more local steel patrens), demonstrating innovation (mass timber is perceived to be more innovative), and supporting MSU pedgogy (some partnerships exist with mass timber industry and MSU College of Agriculture).

Follow Ups: Engage additional MSU planning partners. Complete more in-depth technical review.

Workshop #2 - February 7, 2018

Objectives: Introduce mass timber systems to MSU IPF planning partners to identify early concerns and answer preliminary questions.

Attendees: MSU IPF, IPF Planning Partners listed above, FPSM, IDS, Ellenzweig, SDI, Granger, Guardian, Woodworks

<u>Candavians</u>. In addition to the project team and invited subject matter experts, four IPF planning partners attended. No significant technical concerned for the providence of the providence o

Eollow Ups: Research humidity control question. MSU IPF continuing to discuss internally. Complete more in-depth structural technical review.

Workshop #3 – February 13, 2018

Objectives: Structural engineers to conduct a technical discussion and initial review of mass timber design, members, connections, etc. to identify any technical or engineering concerns.

Attendees: MSU IPF, IDS, Ellenzweig, SDI, Granger, Guardian, Guardian's structural consultant

Conclusion: No technical or engineering concern was identified which would preclude the use of mass timber. A mass timber system was conceptualized as a mass timber frame, cross laminated (LT) floor and roof deck, 3° concrete topping slab, pipe x-bracing, steel stairs, and a steel frame penthouse. No "special" humidity control is require just for mass timber.

Follow Ups: Further investigate steel framing required for curtainwall and envelope systems. Further investigate use of mass timber or steel at Penthouses.

SUMMARY CBA MATRIX

		Mass Timber	Advantage		
Construction Schedule	3-4 months design & fab 16-18 weeks install	3-4 months design & fab 6-8 weeks install	Mass timber is expected to take less time to install		
Code Compliance / AHJ	Type 2 construction. 2HR separation to Power Plant. Special inspections known.	Type 3 construction. 3HR separation to Power Plant. Special inspections less known.	Steel has small beneficial difference in code compliance / AHJ approval.		
Sustainability	Calculated recycled value 75% Regional materials > 50%	Perception that wood products are more sustainable	Very small difference in sustainable attributes		
Aesthetics	Steel could be exposed or concealed. Painted acoustical metal deck.	Mass timber could be exposed or concealed. Exposed, sealed CLT wood deck.	Neutral (subjective).		
Structure & Building Systems Coordination	6 %" total floor section anticipated, 27" deep beams expected	10 %" total floor slab anticipated, beams are deeper than 27"	Steel has small beneficial difference in systems coordination		
Trade Availability	Michigan-based qualified firms with trained workforce	National fabricators expected, rely primarily on local labor to install.	Steel has some beneficial difference in availability of available trades		
Innovation	Unique design possible. Steel is commonly used material.	No known mass timber structures currently exist on MSU campus.	Mass timber has some beneficial difference in demonstrating innovation.		
MSU Pedagogy	Teaching moments/internships for MSU students	Partnerships exist with the College of Agriculture and industry	Mass timber has some beneficial difference in support of MSU pedagogy		
Local economic impact	Fabricators and installers are expected to be Michigan owned. Steel materials regional, but not expected to come from Michigan.	Wood materials could be sourced from Michigan. Majority of installers expected to be Michigan residents. Fabricators likely to be non- Michigan based.	Neutral (detailed economic impact was not completed).		
Reliability	Materials are familiar to the project team.	Materials are unfamiliar to the project team. Shrinkages is not a concern on a building of	Neutral		

INITIAL CONCLUSIONS

FIRST COST: First Cost is anticipated to be neutral between steel or mass timber (\$4.3 - \$4.75million, construction cost).

LIFE CYCLE COST: Life cycle / maintenance costs are anticipated to be negligible for either steel or mass timber.

TECHNICAL: No technical or operational reason has yet been identified which precludes the use of either steel or mass timber for the entire STEM structure or an element within.

ADDITIONAL LEARNING:

Mass Amherst John D. Olver Design School. Completed January 201

- Engage additional mass timber partner to validate conceptual estimate (mass timber budget based on estimate of early scheme, and trade SME anticipates current design to be cost neutral to steel).
- Make site visit to completed project in Amherst, MS or Minneapolis, MN.

GB

Mass Timber Structural Study Summary February 20, 2018 v.1

PIONEERING MASS TIMBER: MSU STEM

PROJECT DELIVERY

PIONEERING MASS TIMBER: MSU STEM

PIONEERING MASS TIMBER: MSU STEM EACHITY

Coleville, WA (CLT, LVL beams/columns, fabricator) SmartLam TimberLab (CLT. GLT. Glulam. (GLT, Glulam, Mercer fabricator) fabricator) (CLT, GLT, Glulam, 4 Columbia Falls, MT Drain, Portland & fabricator) Swisshome OR Okanagan Falls, BC; Spokane, WA Conway, AR; Okanagan Falls. BC: Sauter Timber Timberlyne (Fabricator) (fabricator) Estacada, OR Wayne, NE Rockwood, TN; Estacada, OR Freres Engineered Wood (CLT, LVL beams/columns. Sterling Solutions Dothan, AL; Columbia Falls, MT fabricator) (CLT, fabricator) Lyons, OR Phoenix II Mercer (CLT, GLT, Glulam fabricator) Conway, AR -Drain, Portland & Swisshome, OR: SmartLam (CLT, GLT, Glulam, fabricator) Dothan, AL Timberlyne (fabricator) Boerne, TX (GLT panels, Glulam, NLT, fabricator) Boissevian, MB: Edmonton, AB:

Western Archrib

GLT panels, Glulam,

NLT, fabricator)

Boissevian, MB;

Edmonton, AB; Sturgeon County, AB

SOURCING

DowelLam

(Fabricator)

Abbotsford, BC

DowelLam

(Manufacturer) Abbotsford, BC

St.Thomas, ON

Lyons, OR

Mercer

Kalesnikoff

Castlegar, BC

Spokane, WA

Sauter Timber

Sterling Solutions (CLT, fabricator)

(GLT, Glulam, fabricator)

Wayne, NE; Boerne, TX

Vaagen Timbers (CLT, GLT, Glulam, fabricator)

Western Archrib

Sturgeon County, AB

Coleville, WA

(Fabricator)

SmartLam

Phoenix, IL

TimberLab

Piedmont, SC

Timberlyne

(fabricator)

Element5 | HASSLACHER Group

(CLT, GLT, Glulam, fabricator)

Freres Engineered Wood

(CLT, GLT, Glulam, fabricator)

(CLT, GLT, Glulam, fabricator)

(CLT, GLT, Glulam, fabricator)

Kalesnikoff

(CLT, GLT, Glulam,

fabricator)

Castlegar, BC

Vaagen Timbers

(CLT, GLT, Glulam, fabricator)

- Hasslacher Norica Timber (Austria)
- KLH (Austria)
- Wiehag Timber Construction (Austria)

COLLABORATION

PIONEERING MASS TIMBER: MSU STEM

LESSONS LEARNED

MASS TIMBER CHALLENGES

- » Longer preconstruction process
- » Non-traditional procurement
- » National/international availability
- » Tolerances
- » Protecting finished installed work
- » Education

MASS TIMBER ADVANTAGES

- » Total team collaboration IPD/ Design-Assist
- » Prefabrication
- » Smaller crew sizes
- » Minimal laydown area is required
- » Quicker installation
- » Releases interfacing trades sooner
- » Biophilic design

PIONEERING MASS TIMBER: MSU STEM FACILITY

Andrew G. Riess, P.E. Director of Pre-Construction and Mass Timber

121

satisfies and the satisfies address address and the satisfies

A Change in Construction

How is it Done?

TELE

Project Planning

Part and

2095-03

Dealing with the Structure

Thank You!

Sandra Lupien Director MassTimber@MSU Moderator

George H. Berghorn, PhD, LEED AP, CGP Assistant Professor, Construction Management Research Director, MassTimber@MSU Project History

Kevin Marshall Associate/Senior Architect Integrated Design Solutions Architect Kayla Snyder Senior Programs Manager Michigan Green Building Collaborative Host

Bill Bofysil Project Director Granger Construction **Construction Manager**

Andrew Riess, PE Director of Pre-Construction and Mass Timber Christman Constructors, Inc. Installer

